Materials and Fabrication Processes for Transient and Bioresorbable HighPerformance Electronics
نویسندگان
چکیده
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Materials and fabrication procedures are described for bioresorbable transistors and simple integrated circuits, in which the key processing steps occur on silicon wafer substrates, in schemes compatible with methods used in conventional microelectronics. The approach relies on an unusual type of silicon on insulator wafer to yield devices that exploit ultrathin sheets of monocrystalline silicon for the semiconductor, thin fi lms of magnesium for the electrodes and interconnects, silicon dioxide and magnesium oxide for the dielectrics, and silk for the substrates. A range of component examples with detailed measurements of their electrical characteristics and dissolution properties illustrate the capabilities. In vivo toxicity tests demonstrate biocompatibility in sub-dermal implants. The results have signifi cance for broad classes of water-soluble, "transient" electronic devices.
منابع مشابه
Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics.
The ability of silicon to dissolve in physiological environments allows its use as the basis of a highperformance inorganic integrated circuit technology for active, bioresorbable implant devices. N. R. Aluru, J. A. Rogers, and co-workers perform systematic experimental and theoretical studies of hydrolysis of silicon nanomembranes at near neutral pH, as described on page 1857. This image shows...
متن کاملBioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devi...
متن کاملMaterials for bioresorbable radio frequency electronics.
Materials, device designs and manufacturing approaches are presented for classes of RF electronic components that are capable of complete dissolution in water or biofluids. All individual passive/active components as well as system-level examples such as wireless RF energy harvesting circuits exploit active materials that are biocompatible. The results provide diverse building blocks for physic...
متن کاملCRYSTALLIZATION AND SINTERABILITY BEHAVIOR OF BIORESORBABLE CaO-P2O5-Na2O-TiO2 GLASS CERAMICS FOR BONE REGENERATION APPLICATION
Abstract:Some types of glass and glass ceramics have a great potential for making bone tissue engineering scaffolds, drug carrier and bone cements as they can bond to host bone, stimulate bone cells toward osteogenesis, and resorb at the same time as the bone is repaired. Calcium phosphate glass ceramics have very attractive properties that allow them to use in bone tissue engineering. Calcium ...
متن کاملIndependent Evaluation of Medical-Grade Bioresorbable Filaments for Fused Deposition Modelling/Fused Filament Fabrication of Tissue Engineered Constructs
Three-dimensional printing/additive manufacturing (3DP/AM) for tissue engineering and regenerative medicine (TE/RM) applications is a multifaceted research area encompassing biology, material science, engineering, and the clinical sciences. Although being quite mature as a research area, only a handful of clinical cases have been reported and even fewer commercial products have made it to the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013